Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell ; 187(5): 1127-1144.e21, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38428393

RESUMO

Chloroplasts are green plastids in the cytoplasm of eukaryotic algae and plants responsible for photosynthesis. The plastid-encoded RNA polymerase (PEP) plays an essential role during chloroplast biogenesis from proplastids and functions as the predominant RNA polymerase in mature chloroplasts. The PEP-centered transcription apparatus comprises a bacterial-origin PEP core and more than a dozen eukaryotic-origin PEP-associated proteins (PAPs) encoded in the nucleus. Here, we determined the cryo-EM structures of Nicotiana tabacum (tobacco) PEP-PAP apoenzyme and PEP-PAP transcription elongation complexes at near-atomic resolutions. Our data show the PEP core adopts a typical fold as bacterial RNAP. Fifteen PAPs bind at the periphery of the PEP core, facilitate assembling the PEP-PAP supercomplex, protect the complex from oxidation damage, and likely couple gene transcription with RNA processing. Our results report the high-resolution architecture of the chloroplast transcription apparatus and provide the structural basis for the mechanistic and functional study of transcription regulation in chloroplasts.


Assuntos
RNA Polimerases Dirigidas por DNA , Plastídeos , Cloroplastos/metabolismo , Microscopia Crioeletrônica , RNA Polimerases Dirigidas por DNA/genética , Nicotiana/genética , Fotossíntese , Plastídeos/enzimologia
2.
Plant Cell ; 36(3): 746-763, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38041863

RESUMO

N 6-methyladenosine (m6A) is a common epitranscriptional mRNA modification in eukaryotes. Thirteen putative m6A readers, mostly annotated as EVOLUTIONARILY CONSERVED C-TERMINAL REGION (ECT) proteins, have been identified in Arabidopsis (Arabidopsis thaliana), but few have been characterized. Here, we show that the Arabidopsis m6A reader ECT1 modulates salicylic acid (SA)-mediated plant stress responses. ECT1 undergoes liquid-liquid phase separation in vitro, and its N-terminal prion-like domain is critical for forming in vivo cytosolic biomolecular condensates in response to SA or bacterial pathogens. Fluorescence-activated particle sorting coupled with quantitative PCR analyses unveiled that ECT1 sequesters SA-induced m6A modification-prone mRNAs through its conserved aromatic cage to facilitate their decay in cytosolic condensates, thereby dampening SA-mediated stress responses. Consistent with this finding, ECT1 overexpression promotes bacterial multiplication in plants. Collectively, our findings unequivocally link ECT1-associated cytosolic condensates to SA-dependent plant stress responses, advancing the current understanding of m6A readers and the SA signaling network.


Assuntos
Adenina/análogos & derivados , Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Ácido Salicílico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Plant Commun ; 5(3): 100775, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38050356

RESUMO

The chloroplast is a critical battleground in the arms race between plants and pathogens. Among microbe-secreted mycotoxins, tenuazonic acid (TeA), produced by the genus Alternaria and other phytopathogenic fungi, inhibits photosynthesis, leading to a burst of photosynthetic singlet oxygen (1O2) that is implicated in damage and chloroplast-to-nucleus retrograde signaling. Despite the significant crop damage caused by Alternaria pathogens, our understanding of the molecular mechanism by which TeA promotes pathogenicity and cognate plant defense responses remains fragmentary. We now reveal that A. alternata induces necrotrophic foliar lesions by harnessing EXECUTER1 (EX1)/EX2-mediated chloroplast-to-nucleus retrograde signaling activated by TeA toxin-derived photosynthetic 1O2 in Arabidopsis thaliana. Mutation of the 1O2-sensitive EX1-W643 residue or complete deletion of the EX1 singlet oxygen sensor domain compromises expression of 1O2-responsive nuclear genes and foliar lesions. We also found that TeA toxin rapidly induces nuclear genes implicated in jasmonic acid (JA) synthesis and signaling, and EX1-mediated retrograde signaling appears to be critical for establishing a signaling cascade from 1O2 to JA. The present study sheds new light on the foliar pathogenicity of A. alternata, during which EX1-dependent 1O2 signaling induces JA-dependent foliar cell death.


Assuntos
Alternaria , Arabidopsis , Alternaria/metabolismo , Ácido Tenuazônico/metabolismo , Oxigênio Singlete/metabolismo , Virulência , Cloroplastos/metabolismo , Arabidopsis/genética , Plantas/metabolismo , Transdução de Sinais
4.
Elife ; 122023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37986577

RESUMO

Photosynthesis is one of the most important reactions for sustaining our environment. Photosystem II (PSII) is the initial site of photosynthetic electron transfer by water oxidation. Light in excess, however, causes the simultaneous production of reactive oxygen species (ROS), leading to photo-oxidative damage in PSII. To maintain photosynthetic activity, the PSII reaction center protein D1, which is the primary target of unavoidable photo-oxidative damage, is efficiently degraded by FtsH protease. In PSII subunits, photo-oxidative modifications of several amino acids such as Trp have been indeed documented, whereas the linkage between such modifications and D1 degradation remains elusive. Here, we show that an oxidative post-translational modification of Trp residue at the N-terminal tail of D1 is correlated with D1 degradation by FtsH during high-light stress. We revealed that Arabidopsis mutant lacking FtsH2 had increased levels of oxidative Trp residues in D1, among which an N-terminal Trp-14 was distinctively localized in the stromal side. Further characterization of Trp-14 using chloroplast transformation in Chlamydomonas indicated that substitution of D1 Trp-14 to Phe, mimicking Trp oxidation enhanced FtsH-mediated D1 degradation under high light, although the substitution did not affect protein stability and PSII activity. Molecular dynamics simulation of PSII implies that both Trp-14 oxidation and Phe substitution cause fluctuation of D1 N-terminal tail. Furthermore, Trp-14 to Phe modification appeared to have an additive effect in the interaction between FtsH and PSII core in vivo. Together, our results suggest that the Trp oxidation at its N-terminus of D1 may be one of the key oxidations in the PSII repair, leading to processive degradation by FtsH.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Complexo de Proteína do Fotossistema II/genética , Triptofano/metabolismo , Proteínas de Arabidopsis/metabolismo , Luz , Cloroplastos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Metaloendopeptidases/metabolismo
5.
Cell Rep ; 42(10): 113208, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37792531

RESUMO

Clathrin-mediated vesicular formation and trafficking are responsible for molecular cargo transport and signal transduction among organelles. Our previous study shows that CHLOROPLAST VESICULATION (CV)-containing vesicles (CVVs) are generated from chloroplasts for chloroplast degradation under abiotic stress. Here, we show that CV interacts with the clathrin heavy chain (CHC) and induces vesicle budding toward the cytosol from the chloroplast inner envelope membrane. In the defective mutants of CHC2 and the dynamin-encoding DRP1A, CVV budding and releasing from chloroplast are impeded. The mutations of CHC2 inhibit CV-induced chloroplast degradation and hypersensitivity to water stress. Moreover, CV-CHC2 interaction is impaired by the oxidized GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE (GAPC). GAPC1 overexpression suppresses CV-mediated chloroplast degradation and hypersensitivity to water stress, while CV silencing alleviates the hypersensitivity of the gapc1gapc2 plant to water stress. Together, our work identifies a pathway of clathrin-assisted CVV budding outward from chloroplast, which is involved in chloroplast degradation and stress response.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Humanos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Desidratação/metabolismo , Cloroplastos/metabolismo , Clatrina/metabolismo , Endocitose/fisiologia
6.
Plant Physiol ; 192(4): 3120-3133, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37096689

RESUMO

Chloroplast-to-nucleus retrograde signaling (RS) pathways are critical in modulating plant development and stress adaptation. Among chloroplast proteins mediating RS pathways, GENOMES UNCOUPLED1 (GUN1) represses the transcription of the nuclear transcription factors GOLDEN2-LIKE1 (GLK1) and GLK2 that positively regulate chloroplast biogenesis. Given the extensive exploration of the function of GUN1 in biogenic RS carried out in previous years, our understanding of its role in plant stress responses remains scarce. Here, we revealed that GUN1 contributes to the expression of salicylic acid (SA)-responsive genes (SARGs) through transcriptional repression of GLK1/2 in Arabidopsis (Arabidopsis thaliana). Loss of GUN1 significantly compromised the SA responsiveness in plants, concomitant with the upregulation of GLK1/2 transcripts. In contrast, knockout of GLK1/2 potentiated the expression of SARGs and led to enhanced stress responses. Chromatin immunoprecipitation, coupled with quantitative PCR and related reverse genetic approaches, unveiled that in gun1, GLK1/2 might modulate SA-triggered stress responses by stimulating the expression of WRKY18 and WRKY40, transcriptional repressors of SARGs. In summary, we demonstrate that a hierarchical regulatory module, consisting of GUN1-GLK1/2-WRKY18/40, modulates SA signaling, opening a research avenue regarding a latent GUN1 function in plant-environment interactions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Ácido Salicílico/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
7.
Plant J ; 114(2): 310-324, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36752655

RESUMO

Chloroplast pre-ribosomal RNA (rRNA) undergoes maturation, which is critical for ribosome assembly. While the central and auxiliary factors in rRNA maturation have been elucidated in bacteria, their mode of action remains largely unexplored in chloroplasts. We now reveal chloroplast-specific factors involved in 16S rRNA maturation, Arabidopsis thaliana orthologs of bacterial RsmD methyltransferase (AtRsmD) and ribosome maturation factor RimM (AtRimM). A forward genetic screen aimed to find suppressors of the Arabidopsis yellow variegated 2 (var2) mutant defective in photosystem II quality control found a causal nonsense mutation in AtRsmD. The substantially impaired 16S rRNA maturation and translation due to the mutation rescued the leaf variegation phenotype by lowering the levels of chloroplast-encoded proteins, including photosystem II core proteins, in var2. The subsequent co-immunoprecipitation coupled with mass spectrometry analyses and bimolecular fluorescence complementation assay found that AtRsmD interacts with AtRimM. Consistent with their interaction, loss of AtRimM also considerably impairs 16S rRNA maturation with decelerated m2 G915 modification in 16S rRNA catalyzed by AtRsmD. The atrimM mutation also rescued var2 mutant phenotypes, corroborating the functional interplay between AtRsmD and AtRimM towards modification and maturation of 16S rRNA and chloroplast proteostasis. The maturation and post-transcriptional modifications of rRNA are critical to assembling ribosomes responsible for protein translation. Here, we revealed that the cooperative regulation of 16S rRNA m2 G915 modifications by AtRsmD methyltransferase and ribosome assembly factor AtRimM contributes to 16S rRNA maturation, ribosome assembly, and proteostasis in chloroplasts.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Proteínas de Arabidopsis/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Plastídeos/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Mutação , Metiltransferases/genética , Metiltransferases/metabolismo
8.
Plant Physiol ; 190(4): 2203-2216, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36106983

RESUMO

Homologous recombination-mediated gene targeting (GT) enables precise sequence knockin or sequence replacement, and thus is a powerful tool for heritable precision genome engineering. We recently established a clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9)-mediated approach for heritable GT in Arabidopsis (Arabidopsis thaliana), but its broad utility was not tested, and the underlying molecular mechanism was unclear. Here, we achieved precise GT at 14 out of 27 tested endogenous target loci using the sequential transformation approach and obtained vector-free GT plants by backcrossing. Thus, the sequential transformation GT method provides a broadly applicable technology for precise genome manipulation. We show that our approach generates heritable GT in the egg cell or early embryo of T1 Arabidopsis plants. Analysis of imprecise GT events suggested that single-stranded transfer DNA (T-DNA)/VirD2 complexes produced during the Agrobacterium (Agrobacterium tumefaciens) transformation process may serve as the donor templates for homologous recombination-mediated repair in the GT process. This study provides new insights into the molecular mechanisms of CRISPR/Cas9-mediated GT in Arabidopsis.


Assuntos
Arabidopsis , Arabidopsis/genética , Sistemas CRISPR-Cas/genética , Marcação de Genes/métodos , Recombinação Homóloga/genética , Agrobacterium tumefaciens/genética , Edição de Genes
9.
Proc Natl Acad Sci U S A ; 119(11): e2123353119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35275795

RESUMO

SignificanceAlthough plastid division is critical for plant development, how components of the plastid division machinery (PDM) are imported into plastids remains unexplored. A forward genetic screen to identify suppressors of a crumpled leaf (crl) mutant deficient in plastid division led us to find dominant gain-of-function (GF) mutations in TIC236, which significantly increases the import of PDM components and completely rescues crl phenotypes. The defective plastid division phenotypes in crl and tic236-knockdown mutants and CRL-TIC236 association in a functional complex indicate that the CRL-TIC236 module is vital for plastid division. Hence, we report the first GF translocon mutants and unveil CRL as a novel functional partner of TIC236 for PDM import.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Divisão Celular , Proteínas de Cloroplastos , Proteínas de Membrana Transportadoras , Plastídeos , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Mutação com Ganho de Função , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Plastídeos/genética , Plastídeos/metabolismo , Transporte Proteico
10.
Plant Commun ; 3(1): 100264, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35059631

RESUMO

Chloroplasts overproduce reactive oxygen species (ROS) under unfavorable environmental conditions, and these ROS are implicated in both signaling and oxidative damage. There is mounting evidence for their roles in translating environmental fluctuations into distinct physiological responses, but their targets, signaling cascades, and mutualism and antagonism with other stress signaling cascades and within ROS signaling remain poorly understood. Great efforts made in recent years have shed new light on chloroplast ROS-directed plant stress responses, from ROS perception to plant responses, in conditional mutants of Arabidopsis thaliana or under various stress conditions. Some articles have also reported the mechanisms underlying the complexity of ROS signaling pathways, with an emphasis on spatiotemporal regulation. ROS and oxidative modification of affected target proteins appear to induce retrograde signaling pathways to maintain chloroplast protein quality control and signaling at a whole-cell level using stress hormones. This review focuses on these seemingly interconnected chloroplast-to-nucleus retrograde signaling pathways initiated by ROS and ROS-modified target molecules. We also discuss future directions in chloroplast stress research to pave the way for discovering new signaling molecules and identifying intersectional signaling components that interact in multiple chloroplast signaling pathways.


Assuntos
Arabidopsis , Cloroplastos , Arabidopsis/genética , Arabidopsis/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
11.
Plant Physiol ; 188(4): 2308-2324, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-34951648

RESUMO

GOLDEN2-LIKE (GLK) transcription factors drive the expression of photosynthesis-associated nuclear genes (PhANGs) indispensable for chloroplast biogenesis. Salicylic acid (SA)-induced SIGMA FACTOR-BINDING PROTEIN 1 (SIB1), a transcription coregulator and positive regulator of cell death, interacts with GLK1 and GLK2 to reinforce the expression of PhANGs, leading to photoinhibition of photosystem II and singlet oxygen (1O2) burst in chloroplasts. 1O2 then contributes to SA-induced cell death via EXECUTER 1 (EX1; 1O2 sensor protein)-mediated retrograde signaling upon reaching a critical level. This earlier finding has initiated research on the potential role of GLK1/2 and EX1 in SA signaling. Consistent with this view, we reveal that LESION-SIMULATING DISEASE 1 (LSD1), a transcription coregulator and negative regulator of SA-primed cell death, interacts with GLK1/2 to repress their activities in Arabidopsis (Arabidopsis thaliana). Overexpression of LSD1 repressed GLK target genes, including PhANGs, whereas loss of LSD1 enhanced their expression. Remarkably, LSD1 overexpression inhibited chloroplast biogenesis, resembling the characteristic glk1glk2 double mutant phenotype. Subsequent chromatin immunoprecipitation coupled with expression analyses further revealed that LSD1 inhibits the DNA-binding activity of GLK1 toward its target promoters. SA-induced nuclear-targeted SIB1 proteins appeared to interrupt the LSD1-GLK interaction, and the subsequent SIB1-GLK interaction activated EX1-mediated 1O2 signaling, elucidating antagonistic modules SIB1 and LSD1 in the regulation of GLK activity. Taken together, we provide a working model that SIB1 and LSD1, mutually exclusive SA-signaling components, antagonistically regulate GLK1/2 to fine-tune the expression of PhANGs, thereby modulating 1O2 homeostasis and related stress responses.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fotossíntese , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA , Regulação da Expressão Gênica de Plantas , Fotossíntese/genética , Fator sigma , Fatores de Transcrição/metabolismo
12.
Mol Plant ; 15(3): 438-453, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-34968736

RESUMO

Oxidative post-translational modifications of specific chloroplast proteins contribute to the initiation of retrograde signaling. The Arabidopsis thaliana EXECUTER1 (EX1) protein, a chloroplast-localized singlet oxygen (1O2) sensor, undergoes tryptophan (Trp) 643 oxidation by 1O2, a chloroplast-derived and light-dependent reactive oxygen species. The indole side chain of Trp is vulnerable to 1O2, leading to the generation of oxidized Trp variants and priming EX1 for degradation by a membrane-bound FtsH protease. The perception of 1O2 via Trp643 oxidation and subsequent EX1 proteolysis facilitate chloroplast-to-nucleus retrograde signaling. In this study, we discovered that the EX1-like protein EX2 also undergoes 1O2-dependent Trp530 oxidation and FtsH-dependent turnover, which attenuates 1O2 signaling by decelerating EX1-Trp643 oxidation and subsequent EX1 degradation. Consistent with this finding, the loss of EX2 function reinforces EX1-dependent retrograde signaling by accelerating EX1-Trp643 oxidation and subsequent EX1 proteolysis, whereas overexpression of EX2 produces molecular phenotypes opposite to those observed in the loss-of- function mutants of EX2. Intriguingly, phylogenetic analysis suggests that EX2 may have emerged evolutionarily to attenuate the sensitivity of EX1 toward 1O2. Collectively, these results suggest that EX2 functions as a negative regulator of the EX1 signalosome through its own 1O2-dependent oxidation, providing a new mechanistic insight into the regulation of EX1-mediated 1O2 signaling.


Assuntos
Arabidopsis , Oxigênio Singlete , Arabidopsis/genética , Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Cloroplastos/metabolismo , Filogenia , Oxigênio Singlete/metabolismo
13.
Int J Mol Sci ; 22(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34829988

RESUMO

Low and high temperatures are life-threatening stress factors, diminishing plant productivity. One of the earliest responses of plants to stress is a rapid burst of reactive oxygen species (ROS) in chloroplasts. Widespread efforts over the past decade shed new light on the chloroplast as an environmental sensor, translating the environmental fluctuation into varying physiological responses by utilizing distinct retrograde (chloroplast-to-nucleus) signals. Recent studies have unveiled that chloroplasts mediate a similar unfolded/misfolded/damaged protein response (cpUPR) as observed in the endoplasmic reticulum and mitochondria. Although observing cpUPR is not surprising since the chloroplast is a prime organelle producing harmful ROS, the intertwined relationship among ROS, protein damage, and chloroplast protein quality controls (cpPQCs) with retrograde signaling has recently been reported. This finding also gives rise to critical attention on chloroplast proteins involved in cpPQCs, ROS detoxifiers, transcription/translation, import of precursor proteins, and assembly/maturation, the deficiency of which compromises chloroplast protein homeostasis (proteostasis). Any perturbation in the protein may require readjustment of proteostasis by transmitting retrograde signal(s) to the nucleus, whose genome encodes most of the chloroplast proteins involved in proteostasis. This review focuses on recent findings on cpUPR and chloroplast-targeted FILAMENTOUS TEMPERATURE-SENSITIVE H proteases involved in cpPQC and retrograde signaling and their impacts on plant responses to temperature stress.


Assuntos
Cloroplastos/genética , Metaloproteases/genética , Estresse Fisiológico/genética , Resposta a Proteínas não Dobradas/genética , Retículo Endoplasmático/genética , Espécies Reativas de Oxigênio/metabolismo , Temperatura
14.
STAR Protoc ; 2(4): 100816, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34585156

RESUMO

We present a protocol for analyzing and evaluating the relocalization of proteins from the plasma membrane to chloroplasts. Some plant membrane-bound proteins carry dual targeting signals, e.g., a membrane-anchoring N-myristoylation motif and a chloroplast transit peptide. These proteins are predominantly targeted to membranes; upon certain cues, however, they can undergo detachment from membranes and relocalization to chloroplasts. This protocol combines imaging and biochemical analyses to track in a reliable and quantitative manner the relocalization of proteins between subcellular organelles. For complete details on the use and execution of this protocol, please refer to Medina-Puche et al. (2020).


Assuntos
Proteínas de Cloroplastos , Cloroplastos , Processamento de Imagem Assistida por Computador/métodos , Proteínas de Membrana , Imagem Molecular/métodos , Membrana Celular/química , Membrana Celular/metabolismo , Proteínas de Cloroplastos/análise , Proteínas de Cloroplastos/química , Cloroplastos/química , Cloroplastos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas de Plantas/análise , Proteínas de Plantas/química , Nicotiana
15.
Nat Commun ; 12(1): 3367, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099688

RESUMO

In plants, RNA-directed DNA methylation (RdDM) is a well-known de novo DNA methylation pathway that involves two plant-specific RNA polymerases, Pol IV and Pol V. In this study, we discovered and characterized an RdDM factor, RDM15. Through DNA methylome and genome-wide siRNA analyses, we show that RDM15 is required for RdDM-dependent DNA methylation and siRNA accumulation at a subset of RdDM target loci. We show that RDM15 contributes to Pol V-dependent downstream siRNA accumulation and interacts with NRPE3B, a subunit specific to Pol V. We also show that the C-terminal tudor domain of RDM15 specifically recognizes the histone 3 lysine 4 monomethylation (H3K4me1) mark. Structure analysis of RDM15 in complex with the H3K4me1 peptide showed that the RDM15 tudor domain specifically recognizes the monomethyllysine through an aromatic cage and a specific hydrogen bonding network; this chemical feature-based recognition mechanism differs from all previously reported monomethyllysine recognition mechanisms. RDM15 and H3K4me1 have similar genome-wide distribution patterns at RDM15-dependent RdDM target loci, establishing a link between H3K4me1 and RDM15-mediated RdDM in vivo. In summary, we have identified and characterized a histone H3K4me1-specific binding protein as an RdDM component, and structural analysis of RDM15 revealed a chemical feature-based lower methyllysine recognition mechanism.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Metilação de DNA , RNA Polimerases Dirigidas por DNA/metabolismo , Histonas/metabolismo , RNA Interferente Pequeno/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Cromatina/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação/métodos , Regulação da Expressão Gênica de Plantas , Lisina/metabolismo , Metilação , Plantas Geneticamente Modificadas , Ligação Proteica , Conformação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Sequenciamento Completo do Genoma/métodos
16.
Plant Cell ; 33(4): 1182-1195, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-33693873

RESUMO

Flowering plants sense various environmental and endogenous signals to trigger the floral transition and start the reproductive growth cycle. CONSTANS (CO) is a master transcription factor in the photoperiod floral pathway that integrates upstream signals and activates the florigen gene FLOWERING LOCUS T (FT). Here, we performed comprehensive structural and biochemical analyses to study the molecular mechanism underlying the regulation of FT by CO in Arabidopsis thaliana. We show that the four previously characterized cis-elements in the FT promoter proximal region, CORE1, CORE2, P1, and P2, are all direct CO binding sites. Structural analysis of CO in complex with NUCLEAR FACTOR-YB/YC (NF-YB/YC) and the CORE2 or CORE1 elements revealed the molecular basis for the specific recognition of the shared TGTG motifs. Biochemical analysis suggested that CO might form a homomultimeric assembly via its N-terminal B-Box domain and simultaneously occupy multiple cis-elements within the FT promoter. We suggest that this multivalent binding gives the CO-NF-Y complex high affinity and specificity for FT promoter binding. Overall, our data provide a detailed molecular model for the regulation of FT by the master transcription factor complex CO-NF-Y during the floral transition.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Sítios de Ligação , Cristalografia por Raios X , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Regiões Promotoras Genéticas , Domínios Proteicos , Transativadores/química , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética
17.
Cell ; 182(5): 1109-1124.e25, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32841601

RESUMO

Chloroplasts are crucial players in the activation of defensive hormonal responses during plant-pathogen interactions. Here, we show that a plant virus-encoded protein re-localizes from the plasma membrane to chloroplasts upon activation of plant defense, interfering with the chloroplast-dependent anti-viral salicylic acid (SA) biosynthesis. Strikingly, we have found that plant pathogens from different kingdoms seem to have convergently evolved to target chloroplasts and impair SA-dependent defenses following an association with membranes, which relies on the co-existence of two subcellular targeting signals, an N-myristoylation site and a chloroplast transit peptide. This pattern is also present in plant proteins, at least one of which conversely activates SA defenses from the chloroplast. Taken together, our results suggest that a pathway linking plasma membrane to chloroplasts and activating defense exists in plants and that such pathway has been co-opted by plant pathogens during host-pathogen co-evolution to promote virulence through suppression of SA responses.


Assuntos
Membrana Celular/imunologia , Cloroplastos/imunologia , Doenças das Plantas/imunologia , Imunidade Vegetal/imunologia , Transdução de Sinais/imunologia , Proteínas de Arabidopsis/imunologia , Interações Hospedeiro-Patógeno/imunologia , Ácido Salicílico/imunologia , Virulência/imunologia
18.
Plant Cell ; 32(10): 3240-3255, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32796124

RESUMO

Chloroplasts mediate genetically controlled cell death via chloroplast-to-nucleus retrograde signaling. To decipher the mechanism, we examined chloroplast-linked lesion-mimic mutants of Arabidopsis (Arabidopsis thaliana) deficient in plastid division, thereby developing gigantic chloroplasts (GCs). These GC mutants, including crumpled leaf (crl), constitutively express immune-related genes and show light-dependent localized cell death (LCD), mirroring typical autoimmune responses. Our reverse genetic approach excludes any potential role of immune/stress hormones in triggering LCD. Instead, transcriptome and in silico analyses suggest that reactive electrophile species (RES) generated via oxidation of polyunsaturated fatty acids (PUFAs) or lipid peroxidation-driven signaling may induce LCD. Consistent with these results, the one of the suppressors of crl, dubbed spcrl4, contains a causative mutation in the nuclear gene encoding chloroplast-localized FATTY ACID DESATURASE5 (FAD5) that catalyzes the conversion of palmitic acid (16:0) to palmitoleic acid (16:1). The loss of FAD5 in the crl mutant might attenuate the levels of RES and/or lipid peroxidation due to the reduced levels of palmitic acid-driven PUFAs, which are prime targets of reactive oxygen species. The fact that fad5 also compromises the expression of immune-related genes and the development of LCD in other GC mutants substantiates the presence of an intrinsic retrograde signaling pathway, priming the autoimmune responses in a FAD5-dependent manner.


Assuntos
Proteínas de Arabidopsis/imunologia , Arabidopsis/imunologia , Cloroplastos/imunologia , Ácidos Graxos Dessaturases/imunologia , Imunidade Vegetal/fisiologia , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Morte Celular/genética , Cloroplastos/genética , Ciclopentanos/metabolismo , Ácidos Graxos Dessaturases/genética , Regulação da Expressão Gênica de Plantas , Genes de Cloroplastos , Mutação , Oxilipinas/metabolismo , Ácido Palmítico/metabolismo , Folhas de Planta/genética , Plantas Geneticamente Modificadas , Plastídeos/genética , Ácido Salicílico/metabolismo
19.
Plant J ; 104(4): 964-978, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32860438

RESUMO

The photosynthetic bacterial phycobiliprotein lyases, also called CpcT lyases, catalyze the biogenesis of phycobilisome, a light-harvesting antenna complex, through the covalent attachment of chromophores to the antenna proteins. The Arabidopsis CRUMPLED LEAF (CRL) protein is a homolog of the cyanobacterial CpcT lyase. Loss of CRL leads to multiple lesions, including localized foliar cell death, constitutive expression of stress-related nuclear genes, abnormal cell cycle, and impaired plastid division. Notwithstanding the apparent phenotypes, the function of CRL still remains elusive. To gain insight into the function of CRL, we examined whether CRL still retains the capacity to bind with the bacterial chromophore phycocyanobilin (PCB) and its plant analog phytochromobilin (PΦB). The revealed structure of the CpcT domain of CRL is comparable to that of the CpcT lyase, despite the low sequence identity. The subsequent in vitro biochemical assays found, as shown for the CpcT lyase, that PCB/PΦB binds to the CRL dimer. However, some mutant forms of CRL, substantially compromised in their bilin-binding ability, still restore the crl-induced multiple lesions. These results suggest that although CRL retains the bilin-binding pocket, it seems not functionally associated with the crl-induced multiple lesions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cianobactérias/enzimologia , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , Pigmentos Biliares/metabolismo , Divisão Celular , Liases/genética , Mutação , Fenótipo , Ficobilinas/metabolismo , Ficobiliproteínas/metabolismo , Ficobilissomas/metabolismo , Ficocianina/metabolismo , Plastídeos/metabolismo , Ligação Proteica
20.
Plant Cell ; 32(7): 2237-2250, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32409317

RESUMO

The plant stress hormone salicylic acid (SA) participates in local and systemic acquired resistance, which eventually leads to whole-plant resistance to bacterial pathogens. However, if SA-mediated signaling is not appropriately controlled, plants incur defense-associated fitness costs such as growth inhibition and cell death. Despite its importance, to date only a few components counteracting the SA-primed stress responses have been identified in Arabidopsis (Arabidopsis thaliana). These include other plant hormones such as jasmonic acid and abscisic acid, and proteins such as LESION SIMULATING DISEASE1, a transcription coregulator. Here, we describe PLANT NATRIURETIC PEPTIDE A (PNP-A), a functional analog to vertebrate atrial natriuretic peptides, that appears to antagonize the SA-mediated plant stress responses. While loss of PNP-A potentiates SA-mediated signaling, exogenous application of synthetic PNP-A or overexpression of PNP-A significantly compromises the SA-primed immune responses. Moreover, we identify a plasma membrane-localized receptor-like protein, PNP-R2, that interacts with PNP-A and is required to initiate the PNP-A-mediated intracellular signaling. In summary, our work identifies a peptide and its putative cognate receptor as counteracting both SA-mediated signaling and SA-primed cell death in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Ácido Salicílico/metabolismo , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Morte Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Células Vegetais/metabolismo , Plantas Geneticamente Modificadas , Ácido Salicílico/farmacologia , Estresse Fisiológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA